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Abstract 

Some general features of orthonormal tetrad transport along time-like curves are con- 
sidered while emphasising the kinematical meaning of the 'vierbein' transport process. The 
issue is further illustrated by comparing Frenet-Serret transport with Fermi-Walker 
transport. 

1. hztroduction 

This paper deals with relativistic kinematics.  Some features o f  the mathe- 
matical  implements belonging to the 'vierbein' formalism are here discussed 
in order to point out  some useful remarks concerning the transport  of  
or thonormal  tetrads along given time-like curves. One of  the earliest dis- 
cussions on the or thonormal  'vierbein'  fields in physics is due to Einstein 
(1928, 1930), when he a t tempted a unified formulation of  gravitation and 
electromagnetism in his 'distant  parallelism' theory.  Soon afterwards, the 
mathematical  properties of  tetrad fields were elucidated, and the importance 
o f  the tetrad formulation for a quantum field theory of  gravitation was 
recognized++ by Fock (1929) and Rosenfeld (1930). After a period during 
which the interest in 'vierbeins' subsided, M611er's work on the conservation 
laws o f  general relativity (M611er, 1958, 1964) represents a lucid profit  of  the 
tetrad field technique, since their use is, in fact, indispensable to obtain the 
required transformation properties of  Einstein's taws of  gravitation (Davis & 
Moss, 1963, 1965). Also, in the interesting at tempts to interpret gravitation 
as a compensating Yang-Mills field, the use o f  an or thonormal  tetrad formalism 
has been recognised as indispensable (Kibble, 1961). Not long ago, Kaempfer 
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(1968) showed the usefulness of a 'vierbein' field theory of gravitation for 
the distinction of genuine gravitational fields from pseudogravitational (i.e. 
inertial) fields. In summary, we could say that the field theoretic role of the 
vector tetrad formafismt is well understood today, albeit not widely employed 
in the current literature. 

On the other hand, the use of orthonormal tetrads is not limited to field 
theoretic considerations; indeed, the formalism has also played a fundamental 
role in studies of paths in differential geometry (Caftan, 1935). In the present 
paper we will dwell on these kinematic features of the 'vierbein' technique, 
for its intuitive value is very" appealing. In relativity theory we recognise that 
the specification of  a local frame of  reference pertaining to an observer 
determines a vector tetrad which is being transported along a time-like curve. 
Thus, for instance, the Fermi-Walker transported tetrads, with their time-like 
component vector chosen to be tangent to the transporting curve, appear to 
give us the adequate relativistic generalisation of the Newtonian concept of  
an accelerated non-rotating frame of reference. Although the concept of 
'observer' (as an idealised creature reduced to be a moving point) is perhaps 
purely rhetorical, it is a useful picturesque notion. Each observer has a world 
line (time-like, to be sure), representing his history as an ordered continuous 
sequence of events, and carries a clock (proper time). We obviously normalise 
the theory by requiring all observers to bear clocks of  the same make (standard 
clocks). However, for the purposes of  physics, even if mere kinematics is at 
issue, these idealised point-observers have to be more richly equipped, other- 
wise they would be like monads without windows! The world formed by the 
continuous collection of these isolated beings would have, at most, a purely 
affine structure not corresponding with the metric structure of the world we 
live in. Therefore in relativity theory we have to assume, as is clone for 
instance in cosmology, that each observer carries a fundamental equipment 
composed of the following tools: standard clocks, goniometers, light bulbs, 
and photocells. (This is in the same spirit as the classical 'rule and compass' 
platonic requirement of  the ancient geometers.) This means that the measure- 
ments of  time and angles have a locally direct, operationally simple, meaning, 
while the concept of space distance is a secondary (i.e. derived) construct, 
which has to be defined somehow by recourse to operations performed by 
means of  the fundamental tools only. What is of  interest for us in this context 
is the fact that these implements enable the local observer to set up a physical 
frame of reference by choosing three arbitrary linearly independent space-like 
directions. It must be borne in mind that in making this choice each observer 
is completely free to use whatever physical criterion he wants to, and that his 
own history is not affected by this choice. In consequence, corresponding to 
one and the same time-like curve, we may have quite different local observers 
(in the sense of local frames of reference), each one spinning relative to the 
others. Furthermore, it is clear that each of these coinciding point-observers, 

"~ The field theoretic role of tetrad formalism in the framework of general relativity 
is reviewed by Davis (1966). 
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with their attached rotating frames, corresponds to a concomitant vector 
tetrad which is transported along the common world line according to some 
prescribed equation o f  motion. All these tetrads have the same time-like 
component vector, namely, the unit tangent to the transporting curve, and 
their space-like components represent the three-dimensional spinning frames 
used by the comoving observers to refer the motion of  everything else in the 
universe. 

In the following sections we show how the orthonormal tetrad formalism 
is indeed the space-time geometric realisation of  the kinematic notion o f  a 
local, arbitrarily moving, frame of  reference. We develop our theme in the 
general relativistic formalism. In Section 2 we discuss general transport 
processes which preserve the orthonormatityrelations among the component 
vectors of  a 'vierbein', emphasising some useful remarks of  general validity. 
In Section 3 we introduce the concept of  Frenet-Serret transport as an 
interesting instance of  the issues we are discussing. Finally, in Section 4, we 
briefly present the well-known Fermi-Walker transport, and compare its 
behaviour with our Frenet-Serret transport. 

2. Orthonormality Preserving Transport 

The first point we want to emphasise is that there are infinitely many 
ways of  transporting a given tetrad along a curve while preserving the ortho- 
normality relations among the component vectors o f  the tetrad. Indeed, 
consider a tetradt  {a~v)} such that, at some point on a given time-like curve, 
the relations 

ee~*v)Oe(x v) = 8 ~ (2.2) 

hold.$ Now let us assume the tetrad is transported along the curve while 
preserving these relations. Then the absolute rate of  change of  the vectors 
~ )  can be represented in terms of  the tetrad itself; namely, we have 

t In this paper we let Greek indices run over the range 0, 1, 2, 3, and Latin indices 
over 1 2 3. We adopt signature (-2) for the metric For an orthonormal tetrad we write 
{ (v)}, say, where ~ is a tensor index, and (v) stands for a label denoting the components 
of the tetrad (we designate with (0) the time-like component, and with (i) the space-like 
components). 

$ In equations (2.1) and (2.2) we have used the definitions c~ff ) = gtzv~fh)(P)au(O ) 
where ~(M)(p) = ~(X)(P) = diag. (1, -1, --1, -1)  is Minkowski's matrix, and g#v is space- 
time covariant metric tensor. 
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where 6~v ) denotes the absolute derivative of  o~(v) with respect to proper time, 
and the elements A(v) (x) of  the transport matrix are scalar functions o f  proper 
time. Moreover, since equation (2.1) holds all along the curve, we obtaint  

Ao~)(v) +A(v)O0 = 0 (2.4) 

i.e. the transport matrix is necessarily skew-symmetric. This result is obviously 
related to the fact that each occurrence of  an orthonormal tetrad as it rides 
on a curve corresponds to rigid rotations in space-time; thus the tetrad evolves 
from one orientation to the 'next '  by means o f  an infinitesimal Lorentz trans- 
formation whose generator is the transport matrix. Furthermore, equations 
(2.3) and (2.4) together represent a sufficient condition for preserving equations 
(2.1) and (2.2). That is, provided equations (2.1) (or equation (2.2) for that 
matter) is given as a set o f  initial conditions at some point of  the curve, the 
law of  motion stated in equation (2,3) together with the skew-symmetry of  
A(u)(v) are enough to assure that the orthonormality o f  the tetrad holds all 
along the curve. Hence, every linear homogeneous skew-symmetric process o f  
transport preserves orthonormality. 

Next, we want to remark that associated with each considered law of  
transport for orthonormal tetrads we have a corresponding law of  transport 
for vectors and tensors. Considering again equation (2.3) as the given trans- 
port law of  a 'vierbein' set {a~v)} we can then write, instead of  equation (2.3), 

= ( 2 . 5 )  

where the transport tensor A ~ of  the tetrad is defined as 

A~ ~ = A(v ) (a)o~(~)o~(V) (2.6) 

Clearly, the transport tensor is skew-symmetric: 

A~v +Av~ = 0 (2.7) 

Then let V ~ be a vector propagated along the curve according to the following 
law: 

i~ +A"~V~ = 0 (2.8)  

We say that vector V u is comoving with the tetrad along the curve. Clearly, 
because o f  the skew-symmetry of  the transport tensor of  the tetrad, the norm 
of  a comoving vector is a constant of  motion along the transporting world 
line, i.e. only vectors o f  constant norm on a given curve can be eventually 
comoving with orthonormal tetrads on that curve. It is clear that the scalar 
product of  two vectors comoving with the same tetrad remains constant along 

-~ Although the labels (v) have no ordinary tensorial meaning, we can manipulate them 
confidently as if they were true Lorentz tensorial indices. Thus, in equation (2.4) we 
have used the definition A (~z)(v) = A(v)(h)'o(~.)(v), as is usually done in this approach. 
This rule for raising and lowering the labels by means of the Minkowski matrix prevails 
throughout, and is introduced to secure simplicity. 
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the curve of  transport. In particular, the components of  a vector relative to a 
comoving tetrad are conserved quantities (i.e. proper time independent). 

All these properties are well known for vectors undergoing parallel trans- 
port or Fermi-Walker transport along time-like world lines. What we want to 
stress here is the general validity of  these statements for every kind of  
orthonormal transport. 

It is also interesting to observe that every given vector of  constant norm 
along a curve can be used to define an ad hoc transport tensor on the world 
line, such that equation (2.8) holds for the given vector. Indeed, given that 
(d/dr) V~ V u = 0, we define 

A "up = (Vx V'k)-I (Vitt ~ - VV[ b~#) (2.9) 

This transport tensor is not unique, however. We can always add a skew- 
symmetric tensor to A uv in equation (2.9), provided this added tensor is 
everywhere orthogonal to the vector along the curve, Such a change of  'gauge' 
does not alter equation (2.8), nevertheless it provides us with a completely 
different law of  transport for tetrads. Therefore, associated with a vector of  
constant norm along a curve, we have a whole family of  'propagators' A uv 
for that curve, of  which the simplest member is given in equation (2.9). Con- 
versely, quite different transport processes can be related with one and the 
same constant-norm vector. This 'gauge' freedom for constructing transport 
tensor out of  a constant-norm vector plays an important role in kinematics, 
since it corresponds to the fact, alluded to in the Introduction, that the same 
world line can host different rotating local frames. 

3. Frenet-Serret Transport 

Space-time differential geometry tells us that associated with each event 
on a world fine there is a particularly interesting orthonormal tetrad, the 
tetrad of  Frenet and Serret, which is intimately related with the geometry 
of  the curve. We shall now briefly discuss this 'vierbein', and the corresponding 
law of  transport for vectors, according to the simple ideas presented in the 
previous section. 

We consider a time-like curve. Let u u represent the 4-velocity relative to a 
system of  space-time coordinates. In order to introduce the Frenet-Serret 
tetrad {7~v)} at some event xU(~ -) on the curve (z is proper time) we first 
define 7(o) = c -  u (c denotes the velocity of  light throughout); we then 
define, in a progressive manner, three scalars C(i) and three vectors 7~'), 
i = 1 ,2 ,  3, by  means o f  the well-known Frenet-Serret formulas? 

3'fu) (;~) " (3.1) = C(v) 7(~.) 

"~ The c~nstruction of the Frenet-Serret orthonormal set should be well known to 
the reader. We only recall here that, while the time-like vector 3'~o) is the unit tangent 
to the curve, the space-like unit vectors 7~') point in space-time into the three normal 
directions to the curve, and the scalars C(i)-are the corresponding curvatures of the 
world line. 
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where the Frene t -Serre t  transport matr ix  (or curvature matrix) of the world 
line is given by 

[o o ] 
C0z)(v) = C(D 0 -C(2 ) (3.2) 

[ o  ° c(2~ o c(, 
o o 

It is useful to introduce the rotat ion matr ix  co(u)(v) of the curve, which is 
defined as the dual of the transport matrix, namely 

coO~) (v) = ½ e(u) (v) 0,) (o) C(x) (p) (3.3) 

where e ~)(v)(x)~°) is the permutation symbol in four dimensions. Thus, in 
terms of the rotation matrix, the Frenet-Serret equations become 

5,}zv) = ½ e(v)(x)(p)(cgco(P)(cg'y (x)'u (3.4) 

One easily shows that the vectors of the Frenet-Serret tetrad satisfy the 
orthonormality relations, cf. equation (2.1) and (2.2), all along the curve. 

We now define the corresponding Frene t -Serre t  transport tensor as 

c au = c ( , , )e )7o ' ) x~ ,  c°)~' (3.5) 

and we say that a vector V u is being Frenet-Serret transpoged along the curve 
if it obeys the law of motion, cf. equation (2.8), 

T;" + cuv vv = 0 (3.6) 

which, written explicitly, becomes 

~:U = {C(1)(,,/(0)#,,/(1)p __ ,):(O)v,),(l)#) 

+ C(2)(y(Ou@ z)v - 3,(DvT(z)u) (3.7) 

+ C(3)(@2)u7 (3)v - 3,(2)vT(3)u)} V v 

From here we obtain the Frenet-Serret tensor of the curve. In order to get a 
compact and more useful expression for this tensor, we observe that, quite 
generally, the transport tensor of an orthonormal tetrad is given by 

A u~ = a(~')u&~) (3.8) 

Thus 

Cuv = 7(°)u5,~'o) + 7(0u5,~'i) (3.9) 

But, from equation (3.4), one readily shows 

~/~.) = 6 t]))C(,)7~o) + e(i) 0')(k)co(k)"/(/)" t (3.1 O) 

")"~0) = C(1 )"/~I) ) 
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where we have defined the scalars 

66 (1) = co (°)(0 = -C(3) 

66(2) = 09(0)(2) = 0 ) (3.1 1) 

(.0(3) = (.0(0)(3) = - C ( 2  ) 

So the following compact expression for the Frenet-Serret transport tensor 
obtains 

C up  = -C(l)( , ) , (°) /~"/(1)v - ",/(°)v') t(1)gt) + 6(t)(j.)(k)66(k)7(i)gt'~ (/')v (3.12) 

As for any kind of orthonormal transport, it follows that if we Frenet- 
Serret transport a 'vierbein' along a time-like curve (not necessarily the 
Frenet-Serret tetrad!) the 'vierbein' remains o rthonormal and its Frenet- 
Serret components are constants along the curve. But this means that every 
Frenet-Serret transported tetrad is related to the Frenet-Serret tetrad itself 
by means of a (constant) Lorentz transformation. 

4. Fermi-Walker Transport 

The well-known geometric process called Fermi-Walker transport allows 
us to introduce another kind of interesting orthonormal tetrad associated with 
each event on a time-like world line. According with the general scheme 
~resented in Section 2, one uses the fact that for every time-like curve the 
4-velocity is a vector of constant norm, i.e. uuu u = c 2, and the Fermi-Walker 
transport tensor is thus defined as the simplest 'propagator' generated by the 
4-velocity, cf. equation (2.9); namely 

Buv = c-2 (uU g v - uP g u) (4.1) 

where g~ is the 4-acceleration. From the first two Frenet-Serret equations, 
(3.1) and (3.2), one immediately obtains gU = cC(1)7~1), and so the Fermi- 
Walker tensor of the curve is given by 

BUt)  = _ C( l)(7(O)#,,/(1)p _ ~/,(o)t),y(l)#) (4.2) 

Accordingly, a vector V u is said to undergo Fermi-Walker transport along the 
curve if its proper time rate of change is 

l) "u = C(1)(7(°)u3 ,(a)' - 7(°)v3 ,(1)u) V, (4.3) 

From this definition it follows that the 4-velocity itself automatically evolves 
along the curve under Fermi-Walker transport (trivially so, since the 4-velocity 
was used to generate this type of transport). However, the 4-velocity also 
undergoes Frenet-Serret transport, as can be easily seen, so that both kinds 
of processes differ only by a 'gauge' tensor orthogonal to uU(cf, equation 
(3.1 2) and (4.3)), affording thus an example of the 'gauge' freedom discussed 
in Section 2. 

Compariing equations (3.I2) and (4.2), it is interesting to observe that 
Fermi-Walker and Frenet-Serret become the same transport for time-like 
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curves without torsions, i.e. with vanishing second and third curvatures. These 
curves correspond physically to one-dimensional motions. 

In Section 3 we have defined Frenet-Serret transport while considering 
the Frenet-Serret tetrad (which is a unique structure associated with the world 
line). In the case of Fermi-Walker transport we have to follow a different 
logical path since there is no such structure as the Fermi-Walker tetrad 
associated with the curve. But, as for every orthonormal transport, it is 

u~(T+ dvJ~ 
x+d~"  ~ 

' 

J 

Figure 1 .-Space-time diagram showing the evolution of the Fermi-Walker triad 
{~(/); i = 1, 2, 3}; Y~(3) has been omitted; cf. equation (4.6). 

possible (and interesting) to select the following orthonormal tetrad {/3~v)}: 
/4 14 At some chosen moment of proper time (r, say) we take/3(v)0- ) = 7(~)(T) 

(i.e. this tetrad is initially co-directional with the Frenet-Serret tetrad), and 
then we let the/~-tetrad undergo Fermi-Walker transport along the curve, 
namely 

/~v) + BUX~(v)x = 0 (4.4) 

Of course, we may concentrate our attention in this particular Fermi-Walker 
'vierbein' without loss of generality, since every other Fermi-Walker tetrad 
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will be comoving with this particular one. If  we now explicitly write equation 
(4.4) at proper time ~', we get 

~(v) = C(, ) ( f l (°)"g~ - fl(')"5 l°l) (4.5) 

J 
uU-l'r) I 

1 
I 

F 

Figure 2.-Space-time diagram showing the evolution of the Frenet-Serret triad 
{~(/); i = 1, 2, 3}; 7~') has been omitted; cf. equation (4.7). 

and therefore, at proper t ime r + dr ,  to the first order of  approximation, we 
have 

~ ) ( r  + dr) ~ fl~)(r) + dr ~{~C(1)(r)fl~o)(r ) (4.6) 

with i = 1, 2, 3, representing the evolution of  the Fermi-Walker triad {fi~)}. 
On the other hand, for the Frenet-Serret triad {7~)} we obtain, to the same 
order of  approximation,  

3,~3(r + dr) ~ 7~)(r) + dr 5~)C(,)(r)3,~o)(r) + dr e(i)(])(k)CO(k)(r)7(l)P(r) (4.7) 

In Figs. 1 and 2 these results are shown in a sketchy manner, in order to help 
visuatise their meaning. It is easy to see that, while the Frenet-Serret triad is 
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rotating relative to an instantaneous comoving inertial (i.e. free falling) 
observer, the Fermi-Walker triad evolves without such a rotation. (To this end 
we introduce an auxiliax3r inertial tetrad, {a~v)} say, which is parallel trans- 
ported along the curve, i.e. &~v) = 0, with initial conditions a~) ( r )  = fi~)(r) = 
7~v)(~'); we then substitute for a~v) in the right-hand members of  equations 
(4.6) and (4.7), and project fl~? (r + dr)  and 6~})(r + dr)  along the inertial 
tetrad!) 

To end this section let us find the Fermi-Walker transport matrix. According 
to equation (2.6) we must have 

B (~, ) ~ ) = B U~ fl(x),~(o)v (4.8) 

that is 

= C (1), (o B(~)(p) (1)3' (6~lfl(~.)u - 61°lflCo)u) (4.9) 

where {/3~)} is some  Fermi-Walker transported 'vierbein'. In particular, if at 
proper time z we take ~ ) ( r )  = 7~v)(r), we get 

_ (0  (X) (1)  ~ (0)~, 
B (~,)(;)(r) - C(1 ) (r)(6 Co/~ (x) - ~ Co) ~ (~,)~ (4.10) 

as we akeady know from equation (4.5). 

5. Conehtsion 

To summarise, we observe that the 'propagators '  of  the reference tetrads, 
attached to a given time-like curve, consist of  the Fermi-Walker tensor of  the 
curve plus a skew-symmetric tensor orthogonal to the 4-velocity, i.e. a 'gauge' 
term in the sense of  Section 2, representing the rotation of  the reference frame 
relative to an instantaneous comoving free-falling frame. We also observe, 
quite generally, an enlarged rote for Lorentz transformations: Not only 
inertial tetrads are related by means of them, but accelerated tetrads as well, 
provided these tetrads are riding on a world fine obeying one and the same law 
of  transport. It is clear that, in general, for tetrads riding on a same curve, we 
go from one 'vierbein' to another by means of  (instantaneous) Lorentz trans- 
formations, but as proper time elapses these transformations have to be 
changed, unless the tetrads are comoving. Hence we see that,  from the point 
of  view of  kinematics, it is comotion, and not inertia (i.e. uniform rectilinear 
motion),  the fundamental  property o f  space-time reflected in the Lorentz 
group. In this manner we conclude that the formalism of  the orthonormal 
tetrads riding on time-like curves provides all the required tools to deal with 
arbitrary rotating local frames o f  reference, with their origins undergoing 
general time-like motions in space-time. 
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